Copied to
clipboard

G = C24.165C23order 128 = 27

5th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.165C23, (C23×C4)⋊7C4, (C2×D4).260D4, (C22×D4)⋊16C4, C24.27(C2×C4), (C22×Q8)⋊13C4, C22.8C22≀C2, C23.122(C2×D4), (C22×C4).258D4, C2.7(C243C4), C23.34D46C2, C23.28(C22⋊C4), C23.181(C22×C4), (C23×C4).227C22, (C22×D4).449C22, C2.24(C23.C23), (C2×C23⋊C4)⋊2C2, (C22×C4).73(C2×C4), (C22×C4○D4).2C2, (C2×C4).41(C22⋊C4), (C2×C22⋊C4).4C22, C22.29(C2×C22⋊C4), SmallGroup(128,514)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.165C23
C1C2C22C23C24C23×C4C22×C4○D4 — C24.165C23
C1C2C23 — C24.165C23
C1C22C23×C4 — C24.165C23
C1C2C24 — C24.165C23

Generators and relations for C24.165C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=c, g2=d, ab=ba, ac=ca, eae-1=ad=da, af=fa, ag=ga, bc=cb, bd=db, geg-1=be=eb, bf=fb, bg=gb, fcf=cd=dc, ce=ec, cg=gc, de=ed, df=fd, dg=gd, fef=ade, fg=gf >

Subgroups: 644 in 306 conjugacy classes, 68 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C2.C42, C23⋊C4, C2×C22⋊C4, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C23.34D4, C2×C23⋊C4, C22×C4○D4, C24.165C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C22≀C2, C243C4, C23.C23, C24.165C23

Smallest permutation representation of C24.165C23
On 32 points
Generators in S32
(1 3)(2 15)(4 13)(5 7)(6 11)(8 9)(10 12)(14 16)(17 23)(18 20)(19 21)(22 24)(25 27)(26 30)(28 32)(29 31)
(1 10)(2 11)(3 12)(4 9)(5 14)(6 15)(7 16)(8 13)(17 32)(18 29)(19 30)(20 31)(21 26)(22 27)(23 28)(24 25)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 16)(2 13)(3 14)(4 15)(5 12)(6 9)(7 10)(8 11)(17 21)(18 22)(19 23)(20 24)(25 31)(26 32)(27 29)(28 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 15)(4 14)(5 9)(6 12)(7 8)(10 11)(13 16)(17 25)(18 30)(19 29)(20 26)(21 31)(22 28)(23 27)(24 32)
(1 22 16 18)(2 28 13 30)(3 24 14 20)(4 26 15 32)(5 31 12 25)(6 17 9 21)(7 29 10 27)(8 19 11 23)

G:=sub<Sym(32)| (1,3)(2,15)(4,13)(5,7)(6,11)(8,9)(10,12)(14,16)(17,23)(18,20)(19,21)(22,24)(25,27)(26,30)(28,32)(29,31), (1,10)(2,11)(3,12)(4,9)(5,14)(6,15)(7,16)(8,13)(17,32)(18,29)(19,30)(20,31)(21,26)(22,27)(23,28)(24,25), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,16)(2,13)(3,14)(4,15)(5,12)(6,9)(7,10)(8,11)(17,21)(18,22)(19,23)(20,24)(25,31)(26,32)(27,29)(28,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,15)(4,14)(5,9)(6,12)(7,8)(10,11)(13,16)(17,25)(18,30)(19,29)(20,26)(21,31)(22,28)(23,27)(24,32), (1,22,16,18)(2,28,13,30)(3,24,14,20)(4,26,15,32)(5,31,12,25)(6,17,9,21)(7,29,10,27)(8,19,11,23)>;

G:=Group( (1,3)(2,15)(4,13)(5,7)(6,11)(8,9)(10,12)(14,16)(17,23)(18,20)(19,21)(22,24)(25,27)(26,30)(28,32)(29,31), (1,10)(2,11)(3,12)(4,9)(5,14)(6,15)(7,16)(8,13)(17,32)(18,29)(19,30)(20,31)(21,26)(22,27)(23,28)(24,25), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,16)(2,13)(3,14)(4,15)(5,12)(6,9)(7,10)(8,11)(17,21)(18,22)(19,23)(20,24)(25,31)(26,32)(27,29)(28,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,15)(4,14)(5,9)(6,12)(7,8)(10,11)(13,16)(17,25)(18,30)(19,29)(20,26)(21,31)(22,28)(23,27)(24,32), (1,22,16,18)(2,28,13,30)(3,24,14,20)(4,26,15,32)(5,31,12,25)(6,17,9,21)(7,29,10,27)(8,19,11,23) );

G=PermutationGroup([[(1,3),(2,15),(4,13),(5,7),(6,11),(8,9),(10,12),(14,16),(17,23),(18,20),(19,21),(22,24),(25,27),(26,30),(28,32),(29,31)], [(1,10),(2,11),(3,12),(4,9),(5,14),(6,15),(7,16),(8,13),(17,32),(18,29),(19,30),(20,31),(21,26),(22,27),(23,28),(24,25)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,16),(2,13),(3,14),(4,15),(5,12),(6,9),(7,10),(8,11),(17,21),(18,22),(19,23),(20,24),(25,31),(26,32),(27,29),(28,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,15),(4,14),(5,9),(6,12),(7,8),(10,11),(13,16),(17,25),(18,30),(19,29),(20,26),(21,31),(22,28),(23,27),(24,32)], [(1,22,16,18),(2,28,13,30),(3,24,14,20),(4,26,15,32),(5,31,12,25),(6,17,9,21),(7,29,10,27),(8,19,11,23)]])

32 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M4A4B4C4D4E···4J4K···4R
order12222···2222244444···44···4
size11112···2444422224···48···8

32 irreducible representations

dim1111111224
type++++++
imageC1C2C2C2C4C4C4D4D4C23.C23
kernelC24.165C23C23.34D4C2×C23⋊C4C22×C4○D4C23×C4C22×D4C22×Q8C22×C4C2×D4C2
# reps1241422484

Matrix representation of C24.165C23 in GL6(𝔽5)

400000
040000
001300
000400
000101
000110
,
400000
040000
001000
000100
000010
000001
,
100000
010000
001300
000400
004104
004140
,
100000
010000
004000
000400
000040
000004
,
140000
040000
001002
001011
004004
000404
,
230000
430000
004030
000041
000010
000110
,
320000
120000
002000
000200
000020
000002

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,3,4,1,1,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,4,4,0,0,3,4,1,1,0,0,0,0,0,4,0,0,0,0,4,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,4,4,0,0,0,0,0,0,1,1,4,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,2,1,4,4],[2,4,0,0,0,0,3,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,3,4,1,1,0,0,0,1,0,0],[3,1,0,0,0,0,2,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;

C24.165C23 in GAP, Magma, Sage, TeX

C_2^4._{165}C_2^3
% in TeX

G:=Group("C2^4.165C2^3");
// GroupNames label

G:=SmallGroup(128,514);
// by ID

G=gap.SmallGroup(128,514);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,352,2019,2028]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=c,g^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*c*f=c*d=d*c,c*e=e*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f=a*d*e,f*g=g*f>;
// generators/relations

׿
×
𝔽